วันเสาร์ที่ 24 กุมภาพันธ์ พ.ศ. 2561


RAM 

ผลการค้นหารูปภาพสำหรับ RAM

แรม หรือ หน่วยความจำเข้าถึงโดยสุ่ม (อังกฤษrandom access memory: RAMเป็นหน่วยความจำหลัก ที่ใช้ในระบบคอมพิวเตอร์ยุคปัจจุบัน หน่วยความจำชนิดนี้ อนุญาตให้เขียนและอ่านข้อมูลได้ในตำแหน่งต่าง ๆ อย่างอิสระ และรวดเร็วพอสมควร โดยคำว่าเข้าถึงโดยสุ่มหมายความว่าสามารถเข้าถึงข้อมูลแต่ละตำแหน่งได้เร็วซึ่งต่างจากสื่อเก็บข้อมูลชนิดอื่น ๆ อย่างเทป หรือดิสก์ ที่มีข้อจำกัดของความเร็วในการอ่านและเขียนข้อมูลและความเร็วในการเข้าถึงข้อมูล ที่ต้องทำตามลำดับก่อนหลังตามที่จัดเก็บไว้ในสื่อ หรือมีข้อกำจัดแบบรอม ที่อนุญาตให้อ่านเพียงอย่างเดียว
ข้อมูลในแรม อาจเป็นโปรแกรมที่กำลังทำงาน หรือข้อมูลที่ใช้ในการประมวลผล ของโปรแกรมที่กำลังทำงานอยู่ ข้อมูลในแรมจะหายไปทันที เมื่อระบบคอมพิวเตอร์ถูกปิดลง เนื่องจากหน่วยความจำชนิดนี้ จะเก็บข้อมูลได้เฉพาะเวลาที่มีกระแสไฟฟ้าหล่อเลี้ยงเท่านั้น (หน่วยความจำชั่วคราว)

ประวัติ
ครื่องคอมพิวเตอร์ใช้แรมในการเก็บโปรแกรมและข้อมูลระหว่างการประมวลผล คุณสมบัติที่สำคัญประการหนึ่งของแรมคือความเร็วที่ใช้เข้าหนึ่งตำแหน่งต่าง ๆ ในหน่วยความจำมีค่าเท่า ๆ กัน ซึ่งต่างจากเทคโนโลยีอื่นบางอย่างซึ่งต้องใช้เวลารอกว่าที่บิตหรือไบต์จะมาถึงระบบแรก ๆ ที่ใช้หลอดสุญญากาศทำงานคล้ายกับแรมในสมัยปัจจุบันถึงแม้ว่าอุปกรณ์จะเสียบ่อยกว่ามาก หน่วยความจำแบบแกนเฟอร์ไรต์ (core memory) ก็มีคุณสมบัติในการเข้าถึงข้อมูลแบบเดียวกัน แนวความคิดของหน่วยความจำที่ทำจากหลอดสูญกาศและแกนเฟอร์ไรต์ก็ยังใช้ในแรมสมัยใหม่ที่ทำจากวงจรรวมหน่วยความจำหลักแบบอื่นมักเกี่ยวข้องกับอุปกรณ์ที่มีเวลาเข้าถึงข้อมูลไม่เท่ากัน เช่น หน่วยความจำแบบดีเลย์ไลน์ (delay line memory) ที่ใช้คลื่นเสียงในท่อบรรจุปรอทในการเก็บข้อมูลบิต หน่วยความจำแบบดรัม ซึ่งทำงานใกล้เคียงฮาร์ดดิสก์ในปัจจุบัน เป็นข้อมูลในรูปของแม่เหล็กในแถบแม่เหล็กรูปวงกลมแรมหลายชนิดมีคุณสมบัติ volatile หมายถึงข้อมูลที่เก็บจะสูญหายไปถ้าปิดเครื่องคอมพิวเตอร์ แรมสมัยใหม่มักเก็บข้อมูลบิตในรูปของประจุไฟฟ้าในตัวเก็บประจุ ดังเช่นกรณี ไดนามิคแรม หรือในรูปสถานะของฟลิปฟล็อป ดังเช่นของ สแตติกแรมปัจจุบันมีการพัฒนาแรมแบบ non-volatile ซึ่งยังเก็บรักษาข้อมูลถึงแม้ว่าไม่มีไฟเลี้ยงก็ตาม เทคโนโลยีที่ใช้ ก็เช่น เทคโนโลยีนาโนทิวจากคาร์บอน (carbon nanotube) และ ปรากฏการณ์ magnetic tunnel ในฤดูร้อนปี พ.ศ. 2546 มีการเปิดตัวแรมแบบแม่เหล็ก (Magnetic RAM, MRAM) ขนาด 128 Kib ซึ่งผลิตด้วยเทคโนโลยีระดับ 0.18 ไมครอน หัวใจของแรมแบบนี้มาจากปรากฏการณ์ magnetic tunnel ในเดือนมิถุนายน พ.ศ. 2547 บริษัท อินฟินิออน (Infineon) เปิดตัวต้นแบบขนาด 16 Mib อาศัยเทคโนโลยี 0.18 ไมครอนเช่นเดียวกันสำหรับหน่วยความจำจากคอร์บอนนาโนทิว บริษัท แนนเทโร (Nantero) ได้สร้างต้นแบบขนาน 10 GiB ในปี พ.ศ. 2547 ในเครื่องคอมพิวเตอร์ สามารถจองแรมบางส่วนเป็นพาร์ติชัน ทำให้ทำงานได้เหมือนฮาร์ดดิสก์แต่เร็วกว่ามาก มักเรียกว่า แรมดิสค์ (ramdisk)

1. หน่วยความจำหลักแรมแบ่งออกเป็น 4 ส่วนดังนี้

ผลการค้นหารูปภาพสำหรับ Input Storage Area

  • Input Storage Area เป็นส่วนที่เก็บข้อมูลนำเข้า เพื่อรอประมวลผล
  • Working Storage Area เป็นส่วนที่เก็บข้อมูลระหว่างประมวลผล
  • Output Storage Area เป็นส่วนที่เก็บผลลัพธ์ที่ได้จากการประมวลผล
  • Program Storage Area เป็นส่วนเก็บชุดคำสั่ง เพื่อใช้คอมพิวเตอร์ปฏิบัติคำสั่ง

ตัวอย่างหน่วยความจำหลักแรม
1. Static RAM (SRAM)

ผลการค้นหารูปภาพสำหรับ Static RAM (SRAM)


          ทำจากวงจรที่ใช้เก็บข้อมูลด้วยสถานะ “มีไฟ” กับ “ไม่มีไฟ” ซึ่งสามารถเก็บข้อมูลไว้ได้ตลอดเวลาตราบเท่าที่ยังมีกระแสไฟฟ้าเลี้ยงวงจรอยู่ นิยมไปใช้ทำเป็นหน่วยความจำแคช (Cache) ภายในตัว CPU เพราะมีความเร็วในการทำงานสูงกว่า DRAM มาก แต่ไม่สามารถทำให้มีขนาด ความจุสูงๆได้ เนื่องจากราคาแพงและกินกระแสไฟมากจนมักทำให้เกิดความร้อนสูง อีกทั้งวงจรก็ยังมีขนาดใหญ่ด้วย

2. Dynamic RAM (DRAM)

ผลการค้นหารูปภาพสำหรับ Dynamic RAM (DRAM)

          ทำจากวงจรที่ใช้การเก็บข้อมูลด้วยสถานะ “มีประจุ” กับ “ไม่มีประจุ” ซึ่งวิธีนี้จะใช้พลังงานไฟฟ้าน้อยกว่า SRAM มาก แต่โดยธรรมชาติแล้ว ประจุไฟฟ้าจะมีการรั่วไหลออกไปได้เรื่อยๆ ดังนั้นเพื่อให้ DRAM สามารถเก็บข้อมูลไว้ได้ตลอดเวลาตราบใดที่ยังมีกระแสไฟเลี้ยงวงจรอยู่ จึงต้องมีวงจรอีกส่วน หนึ่งคอยทำหน้าที่ “เติมประจุ” ไฟฟ้าให้เป็นระยะๆ ซึ่งเรียกกระบวนการเติมประจุไฟฟ้านี้ว่าการ รีเฟรช (Refresh)หน่วยความจำ ประเภท DRAM นี้ นิยมนำไปใช้ทำเป็นหน่วยความจำหลักของระบบในรูปแบบของชิปอที (Integrated Circuit) บนแผงโมดูลของ หน่วยความจำ RAM หลากหลายชนิด เช่น SDRAM, DDR, DDR2, DDR3 และ RDRAM เป็นต้น โดยสามารถออกแบบให้มีขนาดความ จุสูงๆได้ กินไฟน้อย และไม่เกิดความร้อนสูง

ชนิดของ Dynamic RAM (DRAM)
          DRAM ที่นำมาใช้ทำเป็นแผงหน่วย ความจำหลัก ของระบบชนิดต่างๆในปัจจุบันดังนี้
          2.1 SDRAM (Synchronous Dynamic RAM)

ผลการค้นหารูปภาพสำหรับ SDRAM (Synchronous Dynamic RAM)

                    SDRAM คือหน่วยความจำแรมที่พัฒนามาจาก DRAM เพื่อให้สามารถทำงานร่วมกับระบบบัสความเร็วสูงได้ โดยบริษัท Samsung เป็นผู้ พัฒนาขึ้นมาในปี ค.ศ.1993 ซึ่งหน่วยความจำก่อนหน้านี้ใช้ระบบบัสแบบอะซิงโครนัส นั่นหมายถึงจังหวะการทำงานของ CPU กับหน่วยความจำใช้ สัญญาณนาฬิกาคนละตัว จังหวะการทำงานที่ไม่ซิงโครไนซ์กันจึงเป็นปัญหา เพราะเทคโนโลยี CPU ต้องการความเร็วและมีการสร้างระบบบัสมาตรฐานขึ้น มาตัวชิปจะใช้บรรจุภัณฑ์ แบบ TSOP (Thin Smail Outine Package) ติดตั้งอยู่บนแผงโมดูล แบบ DIMM (Dual Inline Memory Module) ที่มีร่องบากบริเวณแนวขาสัญญาน 2 ร่อง และมีจำนวนขาทั้งสิ้น 168 ขา ใช้แรงดันไฟ 3.3 โวลด์ ความเร็วบัสมีให้เลือกใช้ทั้งรุ่น PC66 (66 MHz), PC100 (100 MHz), PC133 (133 MHz), PC150 (150 MHz) และ PC200 (200 MHz) แต่ว่าเมื่อเทคโนลียีแรมพัฒนาขึ้นอีก SDRAM ก็มีผู้ใช้น้อยลง จนในปัจจุบัน SDRAM ถือว่าเป็น เทคโนโลยีที่เก่าไปแล้ว จะพบได้ก็แต่เพียงในคอมพิวเตอร์รุ่นเก่าๆทั้งนั้น

          2.2 DDR SDRAM (Double Date Rate SDRAM)

ผลการค้นหารูปภาพสำหรับ DDR SDRAM (Double Date Rate SDRAM)


                    DDR SDRAM คือ หน่วยความจำที่ใช้เก็บข้อมูลชั่วคราว ที่ได้รับการพัฒนาและยึดถือหลักการทำงานตามปกติของหน่วยความจำแบบ SDRAM ตัวชิปจะใช้บรรจุภัณฑ์แบบ TSOP เช่นเดียวกับ SDRAM และมีขนาด ความยาวของแผงโมดูลเท่ากัน คือ 5.25 นิ้ว จึงทำให้ทำงานได้เหมือนกับ SDRAM แทบทุกอย่าง แตกต่างกันตรงที่ DDR-RAM สามารถทำงานที่ความเร็วสูงกว่า 200 MHz ขึ้นไปได้ และมีความสามารถในการรับส่งข้อมูล เพิ่มขึ้น 2 เท่า คือ รับส่งข้อมูลได้ทั้งทั้งขาขึ้นและขาลงของสัญญาณนาฬิกา เทียบกับ SDRAM ปกติที่จะรับส่งข้อมูลเฉพาะขาขึ้นของสัญญาณนาฬิกา เพียงด้านเดียว แรมชนิดนี้สังเกตุได้จากติดตั้งอยู่บนแผงโมดูลแบบ DIMM ที่มีร่องบากบริเวณแนวขาสัญญาณ 1 ร่อง และมีจำนวนขาทั้งสิ้น 184 ขา และเขี้ยวที่ด้านสัมผัสทองแดงมีอยู่ที่เดียว แตกต่างจาก SDRAM ที่มีอยู่ 2 ที่ ใช้แรงดันไฟ 2.5 โวลด์ รองรับความจุสูงสุดได้ 1 GB/แผง การจำแนกรุ่นของ DDR SDRAM นอกจากจะจำแนกออกตามความเร็วบัสที่ใช้งาน เช่น DDR-400 (400 MHz effective) ซึ่งคิดจาก 200 MHz (ความถี่สัญญาณนาฬิกา๗ x 2 (จำนวนครั้งที่ใช้รับส่งข้อมูลในแต่ละรอบของสัญญาณนาฬิกา) แล้ว ยังถูกจำแนกออกตามค่า อัตราความเร็วในการรับส่งข้อมูล (Bandwidth) ที่มีหน่วยความจำเป็นเมกะไบต์ต่อวินาที (MB/s) ด้วยเช่น PC3200 ซึ่งคิดจาก 8 (ความ กว้างของบัสขนาด 8 ไบต์ หรือ 64 บิต) x 200 MHz (ความถี่สัญญาณนาฬิกา) x 2 (จำนวนครั่งที่ใช้รับส่งข้อมูลในแต่ละรอบสัญญาณ นาฬิกา)เท่ากับอัตตราความเร็วในการรับส่งข้อมูลที่ 3,200 MB/s โดยประมาณนั่นเอง ความเร็วบัสในปัจจุบันมีใหเเลือกใช้ตั่งแต่ PC2100 (DDR-266), PC2700(DDR-33), PC3600 (DDR-450), PC4000(DDR-500),PC4200(DDR-533) ไปจนถึง PC5600 (DDR-700)

          2.3 DDR-II SDRAM

ผลการค้นหารูปภาพสำหรับ DDR-II SDRAM

                    ตัวชิปจะใช้บรรจุภัณฑ์แบบ FBGA (Fine-Pitch Ball Gril Array) ที่มีความต้านทานไฟฟ้าต่ำกว่าแบบ TSOP อีกทั่ง ยังสามารถออกแบบให้ตัวชิปมีขนาดเล็กแะบางลงได้ ชิปดังกล่าวถูกติดตั้งอยู่บนแผงโมดูลแบบ DIMM ที่มีร่องบากบริเวณแนวขาสัญญาณ 1 ร่อง และมี จำนวนขาทั่งสิ้น 240 ขา ใช้แรงดันไฟเพียง1.8โวลต์ รองรับความจุได้สูงสุดถึง 4 GB ความเร็วบัสในบัจจุบันมีให้เลือกใช้ตั่งแต่ 200 MHz (DDR2- 400) ไปจนถึง 450 MHz (DDR2-900) รุ่นของ DDR-II นอกจากจำแนกออกตามความเร็วของบัสที่ใช้งาน เช่น DDR2-667 (667 MHz effective) ซึ่งคิดจาก 333 MHz (ความถี่สัญญาณนาฬิกา) x 2 จำนวนครั่งที่ใช้รับส่งข้อมูลในแต่ละรอบของสัญญาณนาฬิกา) แล้ว ยังถูกจำแนกออกตามค่าแบนด์วิดธ์ (Bandwidth) ด้วย เช่น PC2-5400 ซึ่งคิดจาก 8 (ความกว้างของบัสขนาด 8 ไบต์) x 333 MHz ( ความถี่สัญญาณนาฬิกา) x 2 (จำนวนครั่งที่ใช้รับส่งข้อมูลในแต่ระรอบของสัญญาณนาฬิกา๗ เท่าอัตตราความเร็วในการรับส่งข้อมูลที่ 5,400 MB/s โดยประมั่นเอง นอกจากนี้ยังมี รุ่นอื่นๆอีกเช่น PC2-4300 (DDR-533),PC2-6400(DDR2-800) และ PC2-7200 (DDR2-900) เป็นต้น 
                    สำหรับ DRAM ชนิดนี้ กำลังได้รับความนิยมเป็นอย่างมาก จนคาดว่าในอีกไม่นานจะเข้ามาแทนที่มาตรฐานเดิมคือ DDR SDRAM ในที่สุด

          2.4 RDAM (RAMBUS DRAN)

ผลการค้นหารูปภาพสำหรับ RDAM (RAMBUS DRAN)

                    ถูกพัฒนาขึ้นมาโดยบริษัท Rambus lnc โดยนำมาใช้งานครั้งแรกร่วมกับชิปเซ็ต i850 และซีพียู Pemtium 4 ของ Intel ในยุคเริ่มต้น ไม่ค่อยได้รับความนิยมเท่าที่ควร โดยชิปเซ็ตและเมนบอร์ดของ Intel เพียงบางรุ่นเท่านั้นที่สนับสนุน ตัวชิปจะใช้บรรจุภัณฑ์แบบ CSP (Chip-Scale Package) ติดตั้งอยู่บนแผงโมดูลแบบ RIMM (Rambus Inline Memory Module) ที่มีร่อง บากบริเวณแนวขาสัญญาณ 2 ร่อง ใช้แรงดันไฟ 2.5 โวลต์ และรองรับความจุสูงสุดได้มากถึง 2 GB ปัจจุบัน RDRAM ที่มีวางขายในท้องตลาด สามารถ แบ่งได้ออกเป็น 2 กลุ่ม คือ RDRAM (16บิต) เป็น RDRAM แบบ Single Channel ที่มีความกว้างบัส 1 แชนแนลขนาด 16 บิต (2ไบต์) มีจำนวลขาทั้งสิ้น 184 ขา การจำแนกรุ่นโดย มากจำแนกออกตามความเร็วบัสที่ใช้งาน เช่น PC-800 (800 MHz),PC-1066 (1,066 MHZ) และ PC-1200 (1,200 MHz) เป็นต้น
                    RDRAM(32บิต) เป็น RDRAM แบบ Dual Channel ที่มีความกว้างบัส 2 แชแนลขนาด 32 บิต (4ไบต์) มีจำนวนขาทั้งสิ้น 242 ขา การจำแนกรุ่นโดยมากจะจำแนกออกตามค่าแบนด์วิดธ์ (Bandwidth) ที่ได้รับ เช่น RIMM 3200(PC-800),RIMM 4200(PC-1066),RIMM 4800(PC-1200) และ RIMM 6400 (PC-1600) เป็นต้น
                    นอกจากนี้ในอนาคตยังอาจพัฒนาให้มีความกว้างบัสเพิ่มมากขึ้นถึง 4 แชนแนลขนาด 64 บิต(ไบต์) ที่ทำงานด้วย ความเร็วบัสสูงถึง 1,333 และ 1,600 MHz effective ออกมาด้วย โดยจะให้แบนด์วิดธ์มากถึง 10.6 และ 12.8 GB/s ตามลำดับ

ROM

ผลการค้นหารูปภาพสำหรับ rom

รอม (ROM: Read-only Memory หน่วยความจำอ่านอย่างเดียวเป็นหน่วยความจำแบบสารกึ่งตัวนำชั่วคราวชนิดอ่านได้อย่างเดียว ใช้เป็นสื่อบันทึกในคอมพิวเตอร์ เพราะไม่สามารถบันทึกซ้ำได้ (อย่างง่ายๆ) เป็นหน่วยความจำที่มีซอฟต์แวร์หรือข้อมูลอยู่แล้ว และพร้อมที่จะนำมาต่อกับไมโครโพรเซสเซอร์ได้โดยตรง หน่วยความจำประเภทนี้แม้ไม่มีไฟเลี้ยงต่ออยู่ ข้อมูลก็จะไม่หายไปจากหน่วยความจำ (nonvolatile) โดยทั่วไปจะใช้เก็บข้อมูลที่ไม่ต้องมีการแก้ไขอีกแล้วเช่น
·         เก็บโปรแกรมไบออส (Basic Input output System : BIOS) หรือเฟิร์มแวร์ ที่ควบคุมการทำงานของคอมพิวเตอร์
·         ใช้เก็บโปรแกรมการทำงานสำหรับเครื่องคิดเลข
·         ใช้เก็บโปรแกรมของคอมพิวเตอร์ที่ทำงานเฉพาะด้าน เช่น ในรถยนต์ที่ใช้ระบบคอมพิวเตอร์ควบคุมวงจร ควบคุมในเครื่องซักผ้า เป็นต้น
หน่วยความจำประเภท ROM นี้ยังแบ่งออกเป็นประเภทย่อยๆ ตามลักษณะการใช้งานได้หลายประเภท สำหรับเทคโนโลยีในการผลิตตัวไอซีที่ทำหน้าที่เป็น ROM มีทั้งแบบ MOS และแบบไบโพลาร์ ดังแผนภาพ

Oam.jpg

ชนิดของ ROM
1. Mask ROM

ผลการค้นหารูปภาพสำหรับ Mask ROM

หน่วยความจำประเภทนี้ ข้อมูลทั้งหมดที่อยู่ภายในจะถูกโปรแกรมมาจากโรงงานตั้งแต่ขั้นตอนการผลิตไอซี เราจะใช้ ROM ชนิดนี้ เมื่อข้อมูลนั้นไม่มีการเปลี่ยนแปลง และเหมาะสำหรับงานที่ผลิตครั้งละมากๆ ผู้ใช้ไม่สามารถ เปลี่ยนแปลงข้อมูลภายใน ROM ได้ ROM ประเภทนี้มีทั้งแบบไบโพลาร์และแบบ MOS

2. PROM (Programmable ROM)

ผลการค้นหารูปภาพสำหรับ PROM (Programmable ROM)

จากไอซี ROM แบบแรกการโปรแกรมข้อมูลจะต้องโปรแกรมมาจากโรงงาน และต้องผลิตจำนวนมากจึงจะคุ้มค่ากับต้นทุนในการผลิต อีกทั้งโรงงานผู้ผลิตไอซีจะรู้ข้อมูลที่เก็บอยู่ด้วย สำหรับระบบดิจิตอลหรือคอมพิวเตอร์ที่ผลิตออกมาจำนวนไม่มากและต้องการใช้หน่วยความจำ ROM สามารถนำหน่วยความจำ ROM มาโปรมแกรมเองได้ โดยหน่วยความจำนี้จะเรียกว่า PROM ( Programmable Read Only Memory ) หน่วยความจำประเภทนี้ เซลล์เก็บข้อมูลแต่ละเซลล์จะมีฟิวส์ ( fused ) ต่ออยู่ เป็นหน่วยความจำที่ข้อมูลที่ต้องการโปรแกรมจะถูกโปรแกรมโดยผู้ใช้เอง โดยป้อนพัลส์แรงดันสูง ( HIGH VOLTAGE PULSED ) ไอซี PROM ที่ยังไม่ถูกโปรแกรมนั้น ข้อมูลทุกเซลล์หรือทุกบิตจะมีค่าเท่ากันหมด คือ มีลอจิกเป็น 1 แต่เมื่อได้มีการโปรแกรมโดยป้อนแรงดันไฟสูงๆเข้าไปจะทำให้เซลล์บางเซลล์ฟิวส์ขาดไป ทำให้ตำแหน่งที่เซลล์นั้นต่ออยู่มีลอจิกเป็น 0 เมื่อ PROM ถูกโปรแกรมแล้ว ข้อมูลภายใน จะไม่สามารถเปลี่ยนแปลงได้อีก เนื่องจากฟิวส์ที่ขาดไปแล้วไม่สามารถต่อได้ หน่วยความจำชนิดนี้ จะใช้ในงานที่ใช้ความเร็วสูง ซึ่งความเร็วสูงกว่า หน่วยความจำที่โปรแกรมได้ชนิดอื่นๆ

3. EPROM (Erasable Programmable ROM)

ผลการค้นหารูปภาพสำหรับ EPROM (Erasable Programmable ROM)

หน่วยความจำประเภท EPROM เป็นหน่วยความจำประเภท PROM ที่สามารถลบข้อมูลหรือโปรแกรมข้อมูลใหม่ได้ เหมาะสำหรับงานสร้างวงจรต้นแบบที่อาจต้องมีการแก้ไขโปรแกรมหรือข้อมูลใหม่ ข้อมูลจะถูกโปรแกรม โดยผู้ใช้โดยการให้สัญญาณ ที่มีแรงดันง( HIGHVOLTAGESIGNAL) ผ่านเข้าไปในตัว EPROM ซึ่งเป็นวิธีเดียวกับที่ใช้ใน PROM หน่วยความจำประเภทนี้มี 2 ประเภท คือ ประเภทที่ลบข้อมูลด้วยรังสีอัลตราไวโอเลต หรือที่เรียกกันว่า UV PROM ส่วนอีกประเภทหนึ่งเป็นหน่วยความจำที่ลบข้อมูลด้วยไฟฟ้า เรียกว่า EEPROM ย่อมาจาก Electrical Erasable PROM
หน่วยความจำประเภท UV PROM การโปรแกรมทำได้โดยการป้อนค่าแรงดันไฟฟ้าที่เหมาะสมเข้าไป และข้อมูลจะถูกบันทึกไว้ตลอดไป สำหรับการลบข้อมูลทำได้ด้วยการฉายแสงอัลตราไวโอเลตเข้าไปในตัว ไอซี โดยผ่านทางช่องใสที่ทำด้วยผลึกควอตซ์ที่อยู่บนตัวไอซี เมื่อฉายแสงครู่หนึ่ง ( ประมาณ 5 - 10 นาที ) ข้อมูลที่อยู่ภายในก็จะถูกลบทิ้ง ซึ่งช่วงเวลาที่ฉายแสงนี้สามารถดูได้จากข้อมูลที่กำหนด ( DATA SHEET ) มากับตัว EPROM
หน่วยความจำประเภท EEPROM แม้ว่าจะลบและโปรแกรมข้อมูลได้ด้วยกระแสไฟฟ้าซึ่งสะดวกในการใช้งาน แต่ความเร็วในการอ่าน และเขียนข้อมูลจะไม่เร็วเท่าที่ควร

การอ่านขนาดความจุจาก Data Sheet
จากรูป แสดงให้เห็นส่วนประกอบพื้นฐานของ ROM ซึ่งจะมีสัญญาณต่างๆ ที่เกี่ยวข้องกับ ROM และทุกชิปที่อยู่ใน ROM มักมีการจัดแบ่งแยกหน้าที่เสมอ เช่น ขาแอดเดรสของ ROM เป็นอินพุต ส่วนขาข้อมูลจะเป็นเอาต์พุต โดยหลักการแล้วขาข้อมูลจะต่อเข้ากับบัสข้อมูลซึ่งเป็นบัส 2 ทาง ลักษณะโครงสร้างภายในของข้อมูลในหน่วยความจำสามารถดูได้จาก Data Sheet ของ ROM นั้นๆ เช่น ROM ที่ระบุเป็น 1024 8 หรือ 4096 8 ตัวเลขชุดแรก (1024,4096) จะบอกถึงจำนวนตำแหน่งที่ใช้เก็บข้อมูลภายใน ส่วนตัวเลขชุดที่สอง ( 8,8 ) จะเป็นตัวบอกถึงจำนวนบิตของข้อมูลแบบขนานที่อ่านจาก ROM ในการที่จะกำหนดจำนวนเส้นของบัสแอดเดรสที่ใช้กับ ROM จะสามารถรู้ได้จากยกกำลัง x = จำนวนแอดเดรสที่อ้างถึง เช่น 2 ยกกำลัง x = 4096 จะได้ x = 12 ซึ่งก็คือ จำนวนเส้นบัสแอดเดรส

การอ่านข้อมูลจาก Rom

                 1.       CPU จะส่งแอดเดรสไปให้ ROM แอดเดรสดังกล่าวจะปรากฏ เป็นแอดเดรสที่ต้องการอ่าน ใน ROMโดยข้อมูลจะถูกอ่านออกมาเพียงครั้งละ 1 ไบต์เท่านั้น
                 2.       CPU จะต้องให้ช่วงเวลาของการส่งแอดเดรสยาวนานพอประมาณ ( Wait State ) เรียกว่า Access Time โดยปกติแล้วจะต้องใช้เวลาประมาณ 100 - 300 นาโนวินาที ซึ่งขึ้นอยู่กับชนิดของ ROM ซึ่ง ROM จะใช้เวลานั้นในการถอดรหัสแอดเดรส ของข้อมูลที่ต้องการจะอ่านออกมาที่เอาต์พุตของ ROM ซึ่งถ้าใช้เวลาเร็วกว่านั้น ROM จะตอบสนองไม่ทัน
                 3.       CPU จะส่งสัญญาณไปทำการเลือก ROM เรียกว่า สัญญาณ CS (Chip Select) เพื่อบอกว่าต้องการเลือก ROM ซึ่งเป็นการส่งสัญญาณเพื่อยืนยันการเลือกชิปนั่นเอง
                 4.       ข้อมูลจะผ่านออกทางขาข้อมูลชั่วขณะจังหวะการเลือกชิป และเมื่อขาการเลือกชิปไม่แอคทีฟ ข้อมูลก็จะเข้าสู่ภาวะที่มีอิมพีแดนซ์สูง

ROM แตกต่างจาก RAM อย่างไร
คำถามนี้เป็นคำถามยอดฮิตเลย ROM และ RAM จะแตกต่างกันในลักษณะการทำงาน

RAM (Random Access Memory) เราจะเรียกว่าเป็นหน่วยความจำหลัก ซึ่งสามารถเขียนโปรแกรมหรือข้อมูลลงไปได้ และก็สามารถที่จะลบข้อมูลและโปรแกรมต่าง ๆได้เช่นกัน โดยต้องมีไฟฟ้าเลี้ยง RAM ตลอดเวลา สมมุติว่า เราเปิดหน้าเว็บเพจไว้หลาย ๆหน้า หน้าเว็บเพจเหล่านั้นจะถูกเก็บไว้ในแรม ถ้าเราเปิดหน้าเว็บเพจในจำนวนที่มากกว่าที่แรมจะเก็บได้ จะทำให้การเปิดหน้าเว็บเพจจะช้าลง แต่ถ้าเราปิดหน้าเว็บเพจนั้นไปแล้ว หน้าเว็บเพจนั้นก็ถูกลบออกจาก RAM ทำให้เมื่อเรากลับมาเปิดหน้าเว็บเพจนั้นอีกทีก็จะต้องรอให้มีการโหลดใหม่ทุกครั้ง

ROM เป็นหน่วยความจำถาวร ที่เก็บข้อมูลสำคัญไว้โดยข้อมูลเหล่านี้จะมาจากผู้ผลิตหรือมาจากโรงงานได้ทำการลงข้อมูลไว้แล้ว โดยรอมไม่จำเป็นต้องมีไฟฟ้ามาเลี้ยง ROM ข้อมูลก็จะไม่หายเหมือน RAM ส่วนมากข้อมูลในรอมจะเป็นข้อมูลประเภท โปรแกรมควบคุม การจัดการพื้นฐานของระบบ
ไมโครคอมพิวเตอร์ (Bios) เป็นต้นซึ่งเป็นข้อมูลที่สำคัญ สาเหตุหนึ่งที่รอมไม่สามารถที่จะลบข้อมูลได้ก็เพื่อปกป้องไม่ให้ข้อมูลที่สำคัญเหล่านี้เสียหายไป ROM ที่ใช้ในเครื่องคอมพิวเตอร์จะเป็น PROM (Programmable ROM และ EPROM (Erasable Programmable ROM) ซึ่งเป็นหน่วยความจำที่สามารถอ่านได้อย่างเดียว หรือถ้าจะลบก็ต้องฉายแสงอุลตราไวโลเล็ตในการลบ

ความแตกต่างที่เห็นได้ชัดเลยก็คือ RAM สามารถเขียนข้อมูลใหม่และลบข้อมูลที่มีอยู่แล้วได้อย่างต่อเนื่องเท่าไรก็ได้ ส่วน ROM นั้นจะไม่สามารถลบได้นั่นเอง


บรรณานุกรม
https://th.wikipedia.org/wiki/%E0%B9%81%E0%B8%A3%E0%B8%A1
https://th.wikipedia.org/wiki/%E0%B8%A3%E0%B8%AD%E0%B8%A1
http://www.xn--12cg1cxchd0a2gzc1c5d5a.net/rom/